A Mobile Application to Detect Abnormal Patterns of Activity

نویسندگان

  • Omar Abdul Baki
  • Joy Zhang
  • Martin L. Griss
  • Tony Lin
چکیده

In this paper we introduce an unsupervised online clustering algorithm to detect abnormal activities using mobile devices. This algorithm constantly monitors a user’s daily routine and builds his/her personal behavior model through online clustering. When the system observes activities that do not belong to any known normal activities, it immediately generates alert signals so that incidents can be handled in time. In the proposed algorithm, activities are characterized by users’ postures, movements, and their indoor location. Experimental results show that the behavior models are indeed user-specific. Our current system achieves 90% precision and 40% recall for anomalous activity detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the Potential of a Mobile Messaging Application for Self-Initiated Language Learning

With the rapid expansion of deploying mobile instant messaging applications such as Telegram for the purpose of language learning, it is quite apparent that language research in this regard is lagging behind the trend. This study addressed the matter by exploring how language learners utilize a Telegram group for the purpose of language learning. In this regard, the activities of a Telegram lan...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

A Bayesian Approach for the Recognition of Control Chart Patterns

In this research, an iterative approach is employed to recognize and classify control chart patterns. To do this, by taking new observations on the quality characteristic under consideration, the Maximum Likelihood Estimator of pattern parameters is first obtained and then the probability of each pattern is determined. Then using Bayes’ rule, probabilities are updated recursively. Finally, when...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

استفاده از نمایش پراکنده و همکاری دوربین‌ها برای کاربردهای نظارت بینایی

With the growth of demand for security and safety, video-based surveillance systems have been employed in a large number of rural and urban areas. The problem of such systems lies in the detection of patterns of behaviors in a dataset that do not conform to normal behaviors. Recently, for behavior classification and abnormal behavior detection, the sparse representation approach is used. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009